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Statistical models of visual shape and motion

By A. Blake, B. Bascle, M. Isard and J. MacCormick

Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

The analysis of visual motion against dense background clutter is a challenging prob-
lem. Uncertainty in the positions of visually sensed features and ambiguity of feature
correspondence call for a probabilistic treatment, capable of maintaining not simply
a single estimate of position and shape, but an entire distribution. Exact represen-
tation of the evolving distribution is possible when the distributions are Gaussian,
and this yields some powerful approaches. However, normal distributions are lim-
ited when clutter is present: because of their unimodality, they cannot be used to
represent simultaneous alternative hypotheses.

One powerful methodology for maintaining non-Gaussian distributions is based on
random sampling techniques. The effectiveness of ‘factored sampling’ and ‘Markov
chain Monte Carlo’ for interpretation of static images is widely accepted. More re-
cently, factored sampling has been combined with learned dynamical models to prop-
agate probability distributions for object position and shape. Progress in several ar-
eas is reported here. First a new observational model is described that takes object
opacity into account. Secondly, complex shape models to represent combined rigid
and non-rigid motion have been developed, together with a new algorithm to decom-
pose rigid from non-rigid. Lastly, more powerful dynamical prior models have been
constructed by appending suitable discrete labels to a continuous system state; this
may also have applications to gesture recognition.

Keywords: vision; computing; shape; sampling; estimation; gesture

1. Introduction

This paper addresses some problems in the interpretation of visually observed shapes
in motion, both planar and three-dimensional shapes. Mumford (1996), interpreting
the ‘pattern theory’ developed over a number of years by Grenander (1976), views
images as ‘pure’ patterns that have been distorted by a combination of four kinds of
degradations. This view applies naturally to the analysis of static, two-dimensional
images. The four degradations are given here, together with comments on how they
need to be extended to take account of three-dimensional objects in motion.

1. Domain warping, in which the domain of an image I is transformed by a
mapping g:

I(r)→ I(g(r)).

The three-dimensional nature of the world means that the warp g may be com-
posed largely of ‘projective’ or ‘affine’ transformations. The dynamical nature
of the problems addressed here will require time-varying warps g(r, t).
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2. Superposition: objects may overlap and in certain forms of imaging this may
produce linear combinations, which is fortuitous because they can be anal-
ysed by linear spectral decomposition. In images of opaque, three-dimensional
objects, however, far surfaces are obscured by near ones.

3. Distortion and noise: image measurements are corrupted by noise and blur:

I(r)→ f(I(r),n).

Image degradations may be most effectively modelled as applying to certain
image ‘features’ obtained by suitable pre-processing of an image, rather than
directly to an image itself.

4. Observation failure: disturbance of the observation process; often caused, in
the work described here, by distracting background clutter.

A key idea in pattern theory is recognition by synthesis, in which predictions
following from particular hypotheses play an important role. The predictions are
generated and tested against the products of analysis of an image. Bayesian frame-
works, which have gained significant influence in modelling perception (Knill et al .
1996), seem to be a natural vehicle for this combination of analysis and synthesis.
In the context of machine perception of shapes we can state the problem as one of
interpreting a posterior density function p(X | Z) for a shapeX in some appropriate
shape-space S, given data Z from an image (or data (Z1,Z2, . . . ) from a sequence of
images). The posterior density must be computed in terms of prior knowledge about
X and inference about X based on the observations Z. Bayes’s formula expresses
this as follows:

p(X | Z) ∝ p(Z |X)p0(X), (1.1)

in which p0(X) is the prior density for X and the conditional density p(Z | X)
conveys the range of likely observations to arise from a given shape X. All this
links in directly with the four degradations above. In particular, type 1 (warping)
is represented in the prior p0. Types 3 and 4 (noise and observation failure) are
incorporated into the observation density p(Z |X).

The framework for Bayesian inference of visual shape and motion that forms the
basis of this paper is set out in detail in Blake & Isard (1998). This paper aims to
summarize that framework and introduce several new ideas. The organization of the
paper is summarized by section, as follows.

Statistical modelling of shape (§ 2): how to choose a suitable shape-space S and a
prior p0, or to learn them from a set of examples.

Statistical modelling of image observations (§ 3): how to construct an effective
observation density p(Z | X) that takes into account image intensities both within
the shape of interest and in the background.

Sampling methods (§ 4): using random sample generation to construct an approx-
imate representation of the posterior for X, given that the complexity of p(Z | X)
can make exact representation of the posterior infeasible.

Modelling dynamics (§ 5): extending the Bayesian framework to deal with se-
quences of images demands priors for temporal sequences X1,X2, . . . . These can
either be constructed by hand or learned from examples.

Learning dynamics (§ 6): the most effective way to set up dynamical models is to
learn them from training sets.
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(a) (b)

Figure 1. PCA for faces. A shape-space of facial expressions is reduced here by PCA to the
two-dimensional space that best covers the expressions in a certain training sequence.

The Condensation algorithm (§ 7): a random sampling algorithm for interpre-
tation of shapes in motion.

Dynamics with discrete states (§ 8): extending the dynamical repertoire to mod-
elling of motion with several modes, for example walk–trot–canter–gallop.

2. Statistical modelling of shape

This section addresses the construction of a prior model p0(X) for a shape. This can
be done in a somewhat general way if the dimensionality of the shape-space S is fixed
in advance to be small, for example just translations in the plane. Then extended
observation of the positions of moving objects in some area can be summarized as a
histogram which serves as an approximate representation of the prior p0 (Fernyhough
et al . 1996). In higher-dimensional shape-spaces, involving three-dimensional rigid
motion and deformation of shape, histograms are less practical. Here we focus on
Gaussian distributions.

A Gaussian distribution is specified by its mean and variance and these can be
estimated from a training sequence X1,X2, . . . of shapes by taking the sample mean
X and the sample variance

Σ =
1
M

M∑
k=1

(Xk −X)(Xk −X)T .

Moreover, principal components analysis (PCA) (Rao 1973) can be used to restrict
the shape-space S to explain most of the variance in the training set while keeping
the dimension of S small, in the interests of computational efficiency (Cootes et al .
1993; Baumberg & Hogg 1994, 1995a; Lanitis et al . 1995; Beymer & Poggio 1995;
Vetter & Poggio 1996). An example is given in figure 1.

However, the resulting shape-space, though economical, is not especially easy to
interpret because principal components need not be meaningful. More meaningful
‘constructive’ shape-spaces can be generated by acknowledging three-dimensional
projective effects and constructing affine spaces for instance whose components are
directly related to rigid body transformations (Ullman & Basri 1991; Koenderink &
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(a) (b) (c)

Figure 2. Key-frames. (a) Template Q0; (b) key-frame, opening Q1; (c) key-frame, protrusion
Q2. Lips template followed by two key-frames, representing interactively tracked lips in char-
acteristic positions. The key-frames are combined linearly with appropriate rigid degrees of
freedom, to give a shape-space suitable for use in a tracker for non-rigid motion.

Figure 3. Sampling from a prior for lip-shape, excluding translation. Random sampling illustrates
how a learned prior represents plausible lip configurations. Any rigid translations in the training
set, due to head-motion, are separated out as a constructive shape-space in residual PCA.

van Doorn 1991). In addition, named deformations can be included in a basis for S
as ‘key-frames’ (Blake & Isard 1994), as in figure 2.

A constructive shape-space Sc can be combined with PCA to give the best of
both worlds. ‘Residual PCA’ operates on a constructive shape-space that does not
totally cover a certain data-set, and fills in missing components by PCA. Then the
constructive subspace retains its interpretation and only the residual components,
covered by PCA, cannot be directly interpreted. This is done by constructing a
projection operator Ec that maps S to Sc and applying PCA to the residual training-
set vectors Xr

1,X
r
2, . . . where

Xr = X − EcX.

Full details of the algorithm are given in Blake & Isard (1998) and an example of its
application is shown in figure 3.

Finally, some complex issues arise when dealing with mixed rigid and non-rigid
deformation. For example, one application is to track the facial motion of an actor
and channel the coded motion to a graphical animation. It can be argued (Bascle &
Blake 1998) that the composition of expression and pose can be expressed bilinearly
to give shape parameters,

Xj
i = λiYj ,

Phil. Trans. R. Soc. Lond. A (1998)
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(a) (b)

(c) (d)

Figure 4. Pose-invariant transmission of facial expression. Separation of non-rigid from rigid
motion by SVD is used here to extract the facial expression of an actor. The extracted expression
is displayed on this cat caricature in a fixed pose, and can be seen to be independent of the pose
of the actor’s head.

where λi is the weight associated with the ith expression and Yj is the jth component
of an affine transformation. Decomposition of such products can be achieved using
singular value decomposition (SVD) (Barnett 1990), as has been done elsewhere for
structure and motion (Tomasi & Kanade 1991), and shape and shading (Freeman &
Tenenbaum 1997). The practical result is good isolation of pose from expression, as
figure 4 shows.

3. Statistical modelling of image observations

Gaussian distributions may often be acceptable as models of prior shape, but they are
adequate as observation distributions only in the clutter-free case. Typically, in our
framework, observations are made along a series of spines, normal to the hypothesized
shape, as in figure 5. Consider the one-dimensional problem of observing, along a
single spine, the set of feature positions {z = (z1, z2, . . . , zM )}. Assuming a uniform
distribution of background clutter, and a Gaussian model for error in measurement
of the position of the true object edge, leads (Isard & Blake 1996) to the multi-modal
observation density p(z |X) depicted in figure 6. The multiple peaks in the density
are generated by clutter and cannot possibly be modelled by a single Gaussian.
A mixture of Gaussians might be feasible but a very efficient alternative is to use
random sampling (next section).

The observation model above was based on the assumption that the observable
contour is a ‘bent wire’ resting on a cluttered background. This is not very realistic. It
is highly desirable in practice to allow for object opacity and to distinguish between
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Figure 5. Observation process. The thick line is a hypothesized shape, represented as a paramet-
ric spline curve. The spines are curve normals along which high-contrast features (white circles)
are sought.

z5

p(  | X)

X

X

z1

Measured
features z2 z3 z4 z6

z

Figure 6. Multi-modal observation density (one-dimensional illustration). A probabilistic obser-
vation model allowing for clutter and the possibility of missing the target altogether is specified
here as a conditional density p(z |X). It has a peak corresponding to each observed feature.

the textured interior of an object and its cluttered exterior. A probabilistic model
that reflects this is based on the following assumptions.

1. Feature localization error. It is assumed that the feature detector reports ob-
ject outline position with an error whose density is E(·), taken usually to be
Gaussian.

2. Occlusion probability. The possibility that the outline is missed by the feature
detector is allowed, with probability q.
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Figure 7. Finding head-and-shoulders outlines in an office scene. The results of a sample of 1000
configurations are shown ranked by value of their contour discriminant. The table displays the
cases in which D > 1, indicating a configuration that is more target-like than clutter-like.

3. Clutter model. Detection of clutter features is regarded as an i.i.d. random pro-
cess on the portion of each measurement line that lies outside the object. The
probability π(n) that n clutter features are detected on a normal is generally
taken to be uniform.

4. Interior model. Interior features on a measurement line are modelled as uni-
formly distributed along the interior portion of the normal. The distribution
ρ(m) for the number m of interior features observed is taken to be Poisson with
a known density parameter which is actually learned by observing instances of
the object.

A density p(z |X) based on these assumptions can be constructed and expressed as
p = λD, where λ is a constant and

D(X) = p(z |X)/p(z | no object present),

which is the contour discriminant. This is a discriminant function (Duda & Hart
1973) in the form of a likelihood ratio. It has the attraction that, in addition to
conveying the relative values of p(z | X), its absolute value is also meaningful:
D(X) > 1 implies that the observed features z are more likely to have arisen from
the object in location X than from clutter.

Lastly, densities p(z | X) for each normal need to be combined into a grand
observation density p(Z | X), and this raises some issues about independence of
measurements along an object contour. Details of the form and computation of the
full observation density are given in MacCormick & Blake (1998). Results of the
evaluation of the contour discriminant on a real image are shown in figure 7. Analysis
of the same image using the simpler ‘bent wire’ observation model degrades the
results, failing altogether to locate the leftmost of the three people. The explicit
modelling of object opacity has clearly brought significant benefits.
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Figure 8. Sample-set representation of posterior shape distribution for a curve with parameters
X, modelling a head outline. Each sample s(n) is shown as a curve (of varying position and
shape) with a mass proportional to the weight π(n). The prior is uniform over translation, with
some constrained Gaussian variability in the remainder of its affine shape-space.

4. Sampling methods

The next stage of the pattern recognition problem is to construct the posterior
density p(X | Z) by applying Bayes’s rule (1.1). In the previous section it became
plain that the observation density has a complex form in clutter. This means that
direct evaluation of p(X | Z) is infeasible. However, iterative sampling techniques can
be used (Geman & Geman 1984; Ripley & Sutherland 1990; Grenander et al . 1991;
Storvik 1994). The factored sampling algorithm (Grenander et al . 1991) generates a
random variate X from a distribution p̃(X) that approximates the posterior p(X |
Z). First, a sample-set {s(1), . . . , s(N)} is generated from the prior density p(x) and
then a sample X = Xi, i ∈ {1, . . . , N} is chosen with probability

πi =
p(Z |X = s(i))∑N
j=1 p(Z |X = s(j))

.

Sampling methods have proved remarkably effective for recovering static objects
from cluttered images. For such problems X is a multi-dimensional set of parameters
for curve position and shape. In that case the sample-set {s(1), . . . , s(N)} is drawn
from the posterior distribution of X-values, as illustrated in figure 8.

5. Modelling dynamics

In order to be able to interpret moving shapes in sequences of images, it is necessary
to supply a prior distribution not just for shape but also for the motion of that shape.
Consider the problem of building an appropriate prior model for the position of a
hand-mouse engaged in an interactive graphics task. A typical trace in the x–y plane
of a finger drawing letters is given in figure 9. If the entire trajectory were treated
as a training set, the methods discussed earlier could be applied to learn a Gaussian
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 100
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Figure 9. The moving finger writes. (a) The finger trajectory, which has a duration of about 10 s,
executes a broad sweep over the plane. If the trajectory is treated as a training set, the learned
Gaussian prior is broad, as the covariance ellipse (b) shows. Clearly though, successive positions
(individual dots represent samples captured every 20 ms) are much more tightly constrained.

prior distribution for finger position. The learned prior is broad, spanning a sizeable
portion of the image area, and places little constraint on the measured position at any
given instant. Nonetheless, it is quite clear from the figure that successive positions
are tightly constrained. Although the prior covariance ellipse spans about 300 × 50
pixels, successive sampled positions are seldom more than 5 pixels apart.
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Figure 10. Motion data from talking lips. (a) Training sequence of 60 s duration. Random sim-
ulations of learned models: (b) first-order, and (c) second-order. Only the second-order model
captures the natural periodicity (around 1 Hz) of the training set, and spectrogram analysis
confirms this.

For sequences of images, then, a global prior p0(X) is not enough. What is needed
is a conditional distribution p(Xk |Xk−1) giving the distributions of possibilities for
the shape Xk at time t = kτ given the shape Xk−1 at time t = (k− 1)τ (where τ is
the time-interval between successive images). This amounts to a ‘first-order Markov
chain’ model in shape space in which, although in principle Xk may be correlated
with all of X1 . . .Xk−1, only correlation with the immediate predecessor is explicitly
acknowledged.

For the sake of tractability, it is reasonable to restrict Markov modelling to linear
processes. In principle and in practice it turns out that a first-order Markov chain
is not quite enough, generally, but second-order suffices. The detailed arguments
for this, addressing such issues as capacity to represent oscillatory signals and tra-
jectories of inertial bodies, can be found in Blake & Isard (1998, ch. 9). Figure 10
illustrates the point for a practical example. A second-order, ‘auto-regressive process’
(ARP) is most concisely expressed by defining a state vector

Xk =
(
Xk−1
Xk

)
, (5.1)

and then specifying the conditional probability density p(Xk | Xk−1). In the case of
a linear model, this can be done constructively as follows:

Xk −X = A(Xk−1 −X ) +Bwk, (5.2)
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where

A =
(

0 I
A2 A1

)
, X =

(
X
X

)
and B =

(
0
B0

)
. (5.3)

and each wk is a vector of NX independent random N (0, 1) variables and wk, wk′
are independent for k 6= k′. This specifies the probable temporal evolution of the
shape X in terms of parameters A,B, and covers multiple oscillatory modes and/or
constant velocity motion. The constructive form is attractive because it is amenable
to direct simulation, simply by supplying a realization of the succession of random
variates wk.

6. Learning dynamics

Motion parameters (A,B in this paper) can be set by hand to obtain desired effects,
and a logical approach to this has been developed (Blake & Isard 1998, ch. 9). Exper-
imentation allows these parameters to be refined by hand for improved tracking but
this is a difficult and unsystematic business. What is far more attractive is to learn
dynamical models on the basis of training sets. A number of alternative approaches
have been proposed for learning dynamics, with a view to gesture-recognition (see,
for instance, Mardia et al . 1993; Campbell & Bobick 1995; Bobick & Wilson 1995).
The requirement there is to learn models that are sufficiently finely tuned to dis-
criminate amongst similar motions. In the context here of the problem of motion
tracking, rather different methods are called for to learn models that are sufficiently
coarse to encompass all likely motions.

Initially, a hand-built model is used in a tracker to follow a training sequence
which must be not be too hard to track. This can be achieved by allowing only
motions which are not too fast, and limiting background clutter or eliminating it
using background subtraction (Baumberg & Hogg 1994; Murray & Basu 1994; Koller
et al . 1994; Rowe & Blake 1996). Once a new dynamical model has been learned,
it can be used to build a more competent tracker, one that is specifically tuned to
the sort of motions it is expected to encounter. That can be used either to track the
original training sequence more accurately, or to track a new and more demanding
training sequence, involving greater agility of motion. The cycle of learning and
tracking is illustrated in figure 11. Typically two or three cycles suffice to learn an
effective dynamical model.

In mathematical terms, the general problem is to estimate the coefficients A1,
A2, X and B from a training sequence of shapes X1, . . . ,XM , gathered at the
image sampling frequency. Known algorithms to do this are based on the ‘maximum
likelihood’ principle (Rao 1973; Kendall & Stuart 1979) and use variants of ‘Yule–
Walker’ equations for estimation of the parameters of auto-regressive models (Gelb
1974; Goodwin & Sin 1984; Ljung 1987). Suitable adaptations for multidimensional
shape-spaces are given by Blake & Isard (1994), Baumberg & Hogg (1995b), and
Blake et al . (1995), with several useful extensions in Reynard et al . (1996). One
example is the scribble in figure 12, learned from the training-sequence in figure 9.

A more complex example is learning the motions of an actor’s face, using the
shape-space described earlier that covers both rigid and non-rigid motion. Figure 13
illustrates how much more accurately realistic facial motion can be represented by a
dynamical model which is actually learned from examples.
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Hand-built dynamics

Training sequence
slow, clutter-free

Infer dynamical
model

Faster training 
sequence

Iterate

Shape Space Fast test 
sequences

Figure 11. Iterative learning of dynamics. The model acquired in one cycle of learning is installed
in a tracker to interpret the training sequence for the next cycle. The process is initialized with
a tracker whose prior is based on a hand-built dynamical model.

The learning algorithms referred to above treat the training set as exact whereas in
fact it is inferred from noisy observations. Dynamics can be learned directly from the
observations using expectation-maximization (EM) (Dempster et al . 1977). Learn-
ing dynamics by EM is suggested by Ljung (1987) and the detailed algorithm is
given in North & Blake (1997). It is related to the Baum-Welch algorithm used to
learn speech models (Huang et al . 1990; Rabiner & Bing-Hwang 1993), but with
additional complexity because the state-space is continuous rather than discrete. In
practice, accuracy of the learned dynamics are significantly improved when EM is
used, especially in the case of more coherent oscillations.

An extension of the basic algorithm for classes of objects, dealing independently
with motion and with variability of mean shape/position over the class, is described
in Reynard et al . (1996). The same algorithm is also used for modular learning, the
aggregation of training sets for which a joint dynamical model is to be constructed.

7. The Condensation algorithm

The Condensation algorithm is a random sampling algorithm for motion tracking
using statistical observations and a dynamical prior. It is based on factored sampling
but extended to apply iteratively to successive images in a sequence. Similar sampling
strategies have appeared elsewhere (Gordon et al . 1993; Kitagawa 1996), presented as
developments of Monte Carlo methods. The methods outlined here are described in
detail elsewhere. Fuller descriptions and derivation of the Condensation algorithm
are in Isard & Blake (1996, 1998a).

Given that the estimation process at each time-step is a self-contained iteration
of factored sampling, the output of an iteration will be a weighted, time-stamped
sample-set, denoted s(n)

k , n = 1, . . . , N with weights π(n)
k , representing approximately

the conditional state-density p(Xk | Zk) at time t = kτ , where Zk = (Z1, . . . ,Zk),
the history of observations. How is this sample-set obtained? Clearly the process
must begin with a prior density and the effective prior for time-step k should be
p(Xk | Zk−1). This prior is of course multi-modal in general and no functional
representation of it is available. It is derived from the representation as a sample
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Figure 12. Scribbling: simulating a learned model for finger-writing. (a) A training set consisting
of six handwritten letters is used to learn a dynamical model for finger motion. (b) A random
simulation from the model exhibits reasonable gross characteristics.

set {(s(n)
k−1, π

(n)
k−1), n = 1, . . . , N} of p(Xk−1 | Zk−1), the output from the previous

time-step, to which prediction must then be applied.
The iterative process applied to the sample-sets is depicted in figure 14. At the

top of the diagram, the output from time-step k − 1 is the weighted sample-set

{(s(n)
k−1, π

(n)
k−1), n = 1, . . . , N}.

The aim is to maintain, at successive time-steps, sample sets of fixed size N , so
that the algorithm can be guaranteed to run within a given computational resource.
The first operation therefore is to sample (with replacement) N times from the set
{s(n)
k−1}, choosing a given element with probability π

(n)
k−1. Some elements, especially
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(a) (b)

Figure 13. Trained dynamics for facial motion. (a) Hand-built dynamics, exhibited here by
random simulation are just good enough, when used in tracking, to gather a training sequence.
(b) Trained dynamics, however, capture more precisely the constraints of realistic facial motion.

measure

predict

p(xt–1|Zt–1)

p(xt|Zt–1)

p(zt|xt)

p(zt|Zt)

st
(n),πt

(n)

st–1,πt–1

st
(n)

(i) (i)

Figure 14. One time-step in the Condensation algorithm. Blob centres represent sample
values and sizes depict sample weights.

those with high weights, may be chosen several times, leading to identical copies of
elements in the new set. Others with relatively low weights may not be chosen at all.

Each element chosen from the set is now subjected to a predictive step, using an
ARP dynamical model as in equation (5.2). This involves sampling a value of Xk
randomly from the conditional density p(Xk | Xk−1) to form a new set member s(n)

k .
Since the predictive step includes a random component, identical elements may now
split as each undergoes its own independent random motion step. At this stage, the
sample set {s(n)

k } for the new time-step has been generated but, as yet, without its
weights; it is approximately a fair random sample from the effective prior density

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Statistical models of visual shape and motion 1297

(a) (b)

(c) (d)

Figure 15. Tracking with camouflage. Stills depict mean contour configurations, with preceding
tracked leaf positions plotted at 40 ms intervals to indicate motion.

p(Xk | Zk−1) for time-step t. Finally, the observation step from factored sampling
is applied, generating weights from the observation density p(Zk | Xk) to obtain the
sample-set representation {(s(n)

k , π
(n)
k )} of state-density for time t = kτ .

A good deal of experimentation has been performed in applying the Condensa-
tion algorithm to the tracking of visual motion, including moving hands and dancing
figures. Perhaps one of the most stringent tests was the tracking of a leaf on a bush,
in which the foreground leaf is effectively camouflaged against the background. Re-
sults are shown in figure 15 and experimental details can be found in Isard & Blake
(1996).

8. Dynamics with discrete states

A recent development of the dynamical models already described is to append to the
state variable X a discrete state yk to make a ‘mixed’ state

X+
k =

(Xk
yk

)
, (8.1)

where yk ∈ {1, . . . , NS} is drawn from a finite set of discrete states with integer
labels. Each discrete state represents a mode of motion such as ‘stroke’, ‘rest’ and
‘shade’ for a hand engaged in drawing. Corresponding to each state yk−1 = i there
is a dynamical model pi(Xk | Xk−1), which, in the case of the drawing hand, is
likely to be an ARP as in (5.2). The stroke model, for instance, might represent
constant velocity motion, whereas shading would be oscillatory. In addition, and
independently, state transitions are governed by

P (yk = j | yk−1 = i) = Ti,j ,
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(a) (b)

Figure 16. Mixed states tighten constraints in dynamical models. (a) A conventional, contin-
uous-state ARP model used to track ballistic motion, fails unrecoverably as the ball bounces.
Introducing an explicit discrete state for the bounce allows the sample set to split, so that a
significant proportion are able to track the bounce.

a transition matrix following usual practice for Markov chains. More generally, tran-
sition probabilities could be made sensitive to the context Xk−1 in state space, so
that

P (yk = j | yk−1 = i,Xk−1) = Ti,j(Xk−1).

For example this could be used to express an enhanced probability of transition into
the ‘resting’ state when the hand is moving slowly.

Incorporation of mixed states into the Condensation algorithm is straightfor-
ward. It involves using the extended state X+

k in place of the original Xk, so that a
sample s(n)

k is now a value of the extended state. The prediction step, which generates
a new sample s(n)

k from an old one s(n)
k−1 requires a discrete step and a continuous

one. First, the discrete state yk for the new sample is yk = j, chosen randomly, with
probability Ti,j , where i is the discrete state of the old sample. Then the continuous
state is chosen by sampling randomly from a continuous density, as in the original
algorithm, but now one of several possible densities pi(Xk | Xk−1) where again i is
the discrete state of the old sample.

Experiments with a three-state model for drawing have been described in detail
elsewhere (Isard & Blake 1998). In addition to enhancing tracking performance, there
is the bonus that the current discrete state yk can be estimated at each time t = kτ ,
effectively performing gesture recognition as a side-effect. One interesting variation
on the mixed-state theme uses continuous conditional densities pi(Xk | Xk−1) which
are not ARP models. Consider the example of a moving ball, which may occasionally
bounce. This could be represented using two states {1, 2} in which i = 1 stands for the
free ballistic motion of the ball, and i = 2 is the bounce event. A suitable transition
matrix would be

T =
(

1− ε ε
1 0

)
,
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in which 0 < ε� 1 so that ballistic motion has a mean duration τ/ε between bounces.
The fact that T2,2 = 0 ensures that the model always returns to ballistic motion
after a bounce—bouncing at each of two consecutive time-steps is disallowed. Now
p1(. . . | . . . ) is an ARP for ballistic motion but p2(. . . | . . . ) models the instantaneous
reversal of velocity normal to the reflecting surface. Details of experiments with such
a model are in Isard & Blake (1998) but the results are illustrated in figure 16.

9. Conclusions

A high-speed tour has been given of a framework for probabilistic modelling of shapes
in motion, and of their visual observation. The key points are that visual clutter
makes motion analysis hard, and demands full-blooded probabilistic mechanisms to
handle the resulting uncertainty. Further, prior models of motion and of observation
provide powerful constraints, especially so when the models are learned. A more
detailed development is given in Blake & Isard (1998). Since that account, several
new modelling tools have been developed. First, the contour discriminant is a new
observational model that is expressed as a likelihood ratio and takes opacity of objects
into account. Second, complex models for combined rigid and non-rigid motion have
been constructed, with a new algorithm for decomposing the two components. Third,
extending dynamical states to include discrete labels can significantly enhance their
power to constrain perceptual interpretation of shape.

Many interesting questions remain to be addressed. One is whether sampling meth-
ods for object localization can be fused elegantly with the Condensation algorithm,
to allow robust handling of ‘birth’ and ‘death’ (Grenander & Miller 1994) processes
in which objects enter and leave the scene. A second is to extend mixed-state models
to give reliable gesture recognition on the fly, in a manner that is integrated with the
tracking process. A third is to develop algorithms, based on EM, to learn dynami-
cal models from sequences tracked by Condensation, using the full richness of its
probabilistic representation, both for continuous and mixed state systems.
The authors acknowledge the support of the EPSRC and of Oxford Metrics Ltd.
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Discussion

R. Cipolla (University of Cambridge, UK ). Professor Blake has managed to cope
with transitions between different motion models; how about transitions between
shapes?

A. Blake. It has been common practice for tracking algorithms to incorporate
models of shape based on principal components analysis (PCA) (see, for example,
Cootes et al . 1993). The aim of our paper has been to apply prior constraints not only
to shape but also to motion. It is clear that an ARP motion model of the sort that
we are using does favour certain motions over others. As the question rightly implies,
it appears at first sight that an ARP model neglects to constrain shape. However,
constraints on shape are incorporated, implicitly, as the steady state distribution for
this random model of motion. Any stable ARP reaches a statistical steady state which
implies an envelope that (under suitable assumptions) is equivalent to a PCA prior,
like the one in figure 9 of the paper for handwritten characters. So a PCA model, in
which the sample covariance matrix is taken as the covariance of the distribution, is
implied present, in fact, in an ARP as its steady state. Therefore I would say that
when state transitions occur, the prior models both for motion and for shape are
switched.

W. Triggs (INRIA, France). Professor Blake has outlined a ‘grand vision’ of statis-
tics being applied to every aspect of vision and in some sense we have heard this
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before. The classic problem is that one ends up with too many parameters to esti-
mate. Can he tell us what has changed in his set-up so that this is no longer the
case?

A. Blake. I should first ask Mr Triggs what he thinks is the previous incarnation
of this manifesto.

W. Triggs. I guess I mean the full-blown Bayesian pattern recognition paradigm.
But it’s not so much the particular algorithm. Probabilistic models often end up
with lots of parameters, many of which one is forced to either fix or ignore.

A. Blake. I think the answer to the question is that, in a Bayesian approach, it
is wise to pick models which are tasteful and suited to the situation that is being
modelled. Consider, for example, the problem of training a machine to lipread; if we
look at some data from the training set and analyse the opening and shutting action
in the one-dimensional Fourier domain, it is clear that at least a second-order model
is going to be needed. I suppose I am saying that one must look at the problem,
analyse it and apply good taste in the selection of a suitably economical model. It
has been shown that it is indeed possible to do that, for a wide variety of visual
tracking problems.

J. Lasenby (University of Cambridge, UK ). What is the difference between factored
sampling and Gibbs sampling?

A. Blake. The Gibbs sampler (Geman & Geman 1984) is used in a particular
factored sampler as a special form of random variate generator for the prior. The
1984 paper had a Markov model for a two-dimensional image and generated samples
from that prior.

W. Triggs. A technical question: Condensation is only one particular way of prop-
agating probabilities. What are the advantages over, say, the methods of stochastic
integration and Gaussian mixtures?

A. Blake. Stochastic integration is actually very close to what we are doing; one
can see this from the Bayesian formulation. With Gaussian mixtures one must be
very careful. Consider an observation density in the form of a Gaussian mixture with
just two components. Every time the observation density is applied to the state-
density (which itself has a finite number of mixture components), via Bayes’s formula
(equation (1.1) in the paper), the number of components is doubled. Therefore, in
a temporal filter, the number of components in the state density doubles at every
iteration. We will therefore be in deep trouble rather quickly. One can get around
this to some extent by projecting the mixture components onto a basis of finite size,
but this is a somewhat cumbersome approach. The Condensation approach is more
economical, we believe.

M. Sabin (Numerical Geometry, Cambridge, UK ). How much computing power is
actually being applied when doing the lipreading?

A. Blake. The tracking process runs in real time on a current desktop workstation,
using a Kalman filter, rather than the Condensation algorithm. (Recently, since
this discussion, we have developed real-time Condensation, using the technique of
importance sampling with visual colour cues, to guide the sampling process.)
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